reacted similarly to yield 62% of the boronic ester, which was hydrolyzed with sodium borate in hot aqueous ethanol to the crystalline derivative 7, $\mathrm{mp} \mathrm{104-106}{ }^{\circ} \mathrm{C}$ (from ether/petroleum ether). ${ }^{6}$ Cyclohexanone with a solution of $\mathbf{2 a}$ gave the enethiol ether 8, 83\% in crude product, 71% after treatment with aqueous ethanolic sodium borate and then sodium hydroxide to remove boron compounds and distillation. The yield of 8 from phenylthiomethyltrimethylsilane was $65 \%{ }^{11}$ Enethiol ethers were also prepared from $\mathbf{2 a}$ and butyrophenone, bp $130^{\circ} \mathrm{C}(0.1 \mathrm{~mm}), 82 \%,{ }^{6}$ and from 2 a and benzophenone, $\mathrm{mp} 69-70^{\circ} \mathrm{C},{ }^{2} 71 \%$.

One potential use of the α-(phenylthio)alkaneboronic esters (3 and 6) is as precursors of carbonyl compounds. The pinacol boronic ester group has proved unexpectedly resistant to hydrolysis or oxidation, but cleavage of 3 a with N -chlorosuccinimide under basic conditions has given high yields of hemithioacetals or dimethyl acetals. ${ }^{12}$ Another use is the conversion of $\mathbf{1 a}$ or $3 \mathrm{a}\left(\mathrm{R}=\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ to α-iodoalkaneboronic esters ($70-77 \%$) with methyl iodide and sodium iodide in dimethylformamide ${ }^{3}$ for 3 days at $25^{\circ} \mathrm{C}, \alpha$-Haloalkaneboronic esters are of interest for their carbon-carbon bond-forming reactions with Grignard or lithium reagents ${ }^{13,14}$ and as precursors to boronic acids which may bind to enzymes. ${ }^{15}$ Carbon-carbon bond formation has been demonstrated with the sequence illustrated (eq 3).

Acknowledgment. We thank the National Science Foundation for support, Grants No. MPS 75-19557 and CHE 77-11283.

References and Notes

(1) D. S. Matteson and R. J. Moody, J. AM/ Chem. Soc., 99, 3196 (1977).
(2) E. J. Corey and D. Seebach. J. Org. Chem., 31, 4097 (1966)
(3) E. J. Corey and M. Jautelat, Tetrahedron Lett., 5787 (1968).
(4) D. S. Matteson, R. J. Moody, and P. K. Jesthi, J. Am. Chem. Soc., 97, 5608 (1975); D. S. Matteson, Synthesis, 147 (1975),
(5) M. W. Rathke and R. Kow, J. Am. Chem. Soc., 94, 6854 (1972); R. Kow and M. W. Rathke, ibid., 95, 2715 (1973).
(6) New compounds gave satisfactory analyses (C, H, S, and, if present, B and Li) and ${ }^{1} H$ NMR spectra.
(7) B. M. Trost, T. N. Salzmann, and K. Hiroi, J. Am. Chem. Soc., 98, 4887 (1976).
(8) W. J. Kenny, J. A. Walsh, and D. A. Davenport, J. Am. Chem. Soc., 83, 4019 (1961).
(9) T. M. Dolak and T. A. Bryson, Tetrahedron Lett., 1961 (1977)
(10) N. S. Bhacca and D. H. Williams, "Application of NMR Spectroscopy in Organic Chemistry", Holden-Day, San Francisco, Calif., 1964, pp 7780.
(11) F. A. Carey and A. S. Court, J. Org. Chem., 37, 939 (1972).
(12) A. Mendoza and D. S. Matteson, unpublished work.
(13) D. S. Matteson and R. W. H. Mah, J. Am. Chem. Soc., 85, 2599 (1963).
(14) M. W. Rathke, E. Chao, and G. Wu, J. Organomet. Chem., 122, 145 (1976); H. C. Brown, N. R. Delue, Y. Yamamoto, and K. Maruyama, J. Org. Chem., 42, 3252 (1977); H. C. Brown, N. R. De Lue, Y. Yamamoto, K. Maruyama, T. Kasahara, S. Murahashi, and A. Sonoda, ibid., 42, 4088 (1977).
(15) R. N. Lindquist and A. C. Nguyen, J. Am. Chem. SoC., 99, 6435 (1977).

Donald S. Matteson,* Karl Arne
Department of Chemistry, Washington State University Pullman, Washington 99164
Received October 25, 1977

Additions and Corrections

Flash Photolysis of $\mathrm{Na}^{+}, \mathrm{C}^{-}\left(\mathrm{Ph}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}^{-}(\mathrm{Ph})_{2}, \mathrm{Na}^{+}\right.$. Redox Potential of 1,1-Diphenylethylene and Rate Constant of Dimerization of Its Radical Anion [J. Am. Chem. Soc., 99, 4612 (1977)]. By H. C. Wang, E. D. Lillie, S. Slomkowski, G. Levin, and M. Szwarc,* Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210.

Because of an inadvertent error, the "wrong" Figure 7 was published. The correct figure is presented here.

Figure 7. The square root of reciprocals of the corrected slopes of the lines $1 / د$ (OD 470) vs. time (see caption to Figure 6) plotted as functions of [Trph]/[D] (triangles) or [B]/[D] (circles).

Cyclic Peptides. 17. Metal and Amino Acid Complexes of $c y$ -clo(Pro-Gly) 4 and Analogues Studies by Nuclear Magnetic Resonance and Circular Dichroism" [J. Am. Chem. Soc., 99, 4788 (1977)]. By Vincent Madison, Charles M. Deber, and Elkan R. Blout,* Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115.

Page 4790, first column, 15th line from the bottom: Read "the molecular weight of cyclo(Pro-Gly),", rather than "the molecular weight of $\operatorname{cyclo}(\text { Pro-Gly })_{2}$ ".

Page 4797, first column, line 12: Change "Table IV" to read "Table II".

Page 4797, column 2, third paragraph, line 14: Change "Table VIII" to read "Table IV".

Page 4797, fourth paragraph, lines 11 and 12: Change "Figure 4 and Table X" to read "Figure 2 and Table XI".

Application of Linear Dichroism to the Analysis of Electronic Absorption Spectra of Biphenyl, Fluorene, 9,9'-Spirobifluorene, and [6.6]Vespirene. Interpretation of the Circular Dichroism Spectrum of [6.6]Vespirene [J. Am. Chem. Soc., 99, 6861 (1977)]. By Jacob Sagiv,* Amnon Yogev, and Yehuda Mazur, Department of Isotopes and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.

Page 6868, column 1, line 1 should be: ". . . fluorene transitions lead to z - and y-polarized exciton pairs having opposite sign in the CD spectrum, while the transversal x-polarized bands...".

